

Activity Report

On 11 May, 2022

Field Visit Design Thinking & Critical Thinking

In Association with
Civil Engineering Students Association (CESA)

Department of Civil Engineering

Shri Vile Parle Kelavani Mandal's Institute of Technology, Dhule's

Activity On

Field Visit Design Thinking & Critical Thinking

Water Treatment Plant Visit and Design of New WTP

IIC Self Driven Activity for Year 2021-22

"WTP Plan and Design" 11th May, 2022

Institutional IIC Certificate

SVKM's Institute of Technology, Dhule.

IIC President- Dr. Nilesh Salunke
IIC Vice President - Dr. Shrikant B. Randhavane
IIC Convener - Prof.Dr. Namra Joshi
HOD Mech. Engg.- Dr. Hitesh Thakare

Departmental IIC Coordinators

- Prof. Deepak Singh Baghel
- Prof. Achal Agrawal

Event Details

Introduction:

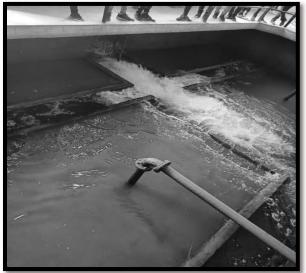
SVKM's Institute of Technology have established Institute Innovation Council (IIC) as per the norms of Innovation Cell, Ministry of Education, MHRD, Govt. of India. Under this council, all departments are conducting series of programs including IIC Calendar Activities as well as Self Driven Activities. SVKM's IOT IIC established on 11-09-2020 for the Academic Year 2021-22.

As a part of IIC self Driven Activities, Department of Civil Engineering conducted Field Visit for Design Thinking & Critical Thinking of Water Treatment Plant at Hanuman Tekri, Dhule (MS) on 11th May, 2022 at 10:00 AM.

Field Visit Highlights

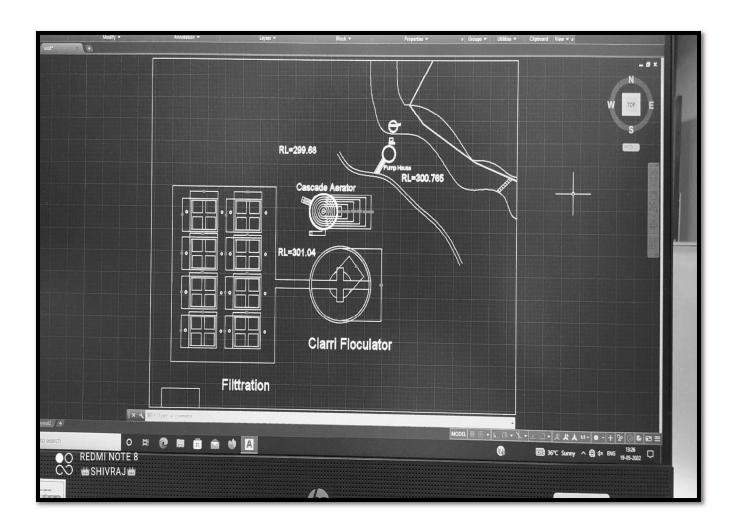
For this activity, the coordinators were Prof. Deepak Singh Baghel and Prof. Achal Agrawal. It included visit of students to Water Treatment Plant(WTP) at Hanuman Tekri, Dhule (MS). After the visit students have analyzed processes and units in the WTP. Based on Analysis, it was found that existing capacity of WTP (18 MLD) is insufficient to fulfill the demand. Hence, a new WTP was designed for meeting future water demand of Dhule city. The new WTP was designed for next 30 years population. The future demand was calculated using population forecasting methods. The new plan was prepared using AutoCAD and design of different units was done by students with reference to CPHEEO manual. The new design helped students to develop skill of Design thinking and Critical thinking.

Following are the some of the glimpses of the activity



The Plan and design of new WTP for Dhule City

Objectives


1. To design new WTP by analyzing existing one.

Benefits:

- 1. This activity helps in Design Thinking and Critical Thinking of Students.
- 2. This helps utilization of theory knowledge in field.

We thank, Dhule Municipal Corporation and Engineers at WTP, Hanuman Tekri, SVKM's Management & our Honorable Principal Dr. Nilesh Salunke IIC President SVKM IOT, Dr. Shrikant B. Randhavane IIC Vice President, SVKM IOT, Dr Namra Joshi, IIC Convener, SVKM IOT, and all our departmental colleagues & students who participated in this activity.

	Design Guiteria Jose Design of Carcade Aeratore					
*	Asiea sieguissed of Design of Aeratori - 0.015-0.045 n²/n³/list.					
- 4	No. of cascade = 3 to 9					
*	Height of acceptoer = 1 to 3m					
-*	Rise of each step = 20 to soem					
*	Velocity of inlet pipe = 0.3 to 0.9 mls.					
	Design a Cascade Acrator gon inflow					
A.	Design of Oulet pipe:					
	Flow - Q - 37-125 MLD					
	= 0.425 m3/s					
	Assuming Velocity through pipe. 0.9 m/s					
	Assea of inlet pipe - (9/V) = 0.425/0.9 = 0.4722					
	Assea of inlet pipe = (9/v) = 0.425/0.9 = 0.4722 = (11/4) de					
	de : Dianeter of Julet pipe - 0.774m					

В.	Design of Acrators:
	Assuming Asia sieguised for Design of Aerator - 0.03 n2/n3 lbs
	Q= 1546.875 m3/ln. Днеа од Вонот Cascade aenatos = 0.03×1546.875 = 46.406m²
	Total area of bottom cascade-Arrea of Arrea of bottom timbet Arrea of Bottom Pipe
	= 46.406 + 0.472
	= 46.878 m²
B.	Design of Aerator
	Total area of bottom cascade = 46.878 m² acratar
	Assuming no. of steps = 6
	Dianeter of bottom Cascade:-
	(T/4) d2 = 46.878
	d6= 7.725 m

Assuming Height of Acraton = 3 m Rise of each step 3/6 = 0.5m Diameter of ste Cascade Acratos (7.725/3) : ds/(23-0.5) ds= 6.43 m Diameter of 4th Cascade Acratos (7-725/3) = d4 (3-1) dy = 5.144m Diameter of 3rd Cascade Aeraton (7-725/3) = d3 (3-1.5) d3 = 3.858m Dianieter of 2nd Cascade Acraton (7.725/3) = d2 (3-2) d2 = 2.572 m

Design of 1st Cascade Revators (7.725/3) = d, (3/-2.5) di = 1.286 m Design of Collecting Channels Diameter of Collecting channel = 7-725+1+1 9= 9/2=1.375bxh(3/2) 9 = 0.425 = 1.375 x 1x 63/2 h= 0.440 m where q = discharge through channel in nots h = height of channel. Assume height of freeboard = 0.5 m Total height = 0.94m

7-793	
	PST
	1114 7
Ans→	Design a plain sedimentation tank for max. daily demand of water 74.24x10 5 littlday Assume the velocity of Flow to be 20cm/min and detention time 4 hours ouality of water to be breated; = 74.25 x10 1it day = 309 3.750 m³ Hr
	Capacity of sedimentation tank required
	= V = Q XDT
	= 12375 m ³ .
	The required capacity of sedimentation is more
	Hence, we provide 4 tanks.
	: capacity of sedimentation of tank V1 = V14 = 12375/4 = 3093:75.
1000	Velocity of Flow to maintained through the tank . V = 30cm lmin = 0.3 m lmin
	The length of tank I tank required

```
L: V X DT
     = 0.3 ×4×60 =18m
   The cls area of I tank is required
     = (capacity of 1 tank | length of 1 tank)
   = 3093:75 /18
   = 171: 875
   Assuming the water depth in tank is 45 m
Total width of tank 1
    B = cls area. depth
        = 171-875 -14.5
          = 38.19·m
The required capacity as sedimentalin
   The width of 1 tank
      = 138·19·15
     = 9.54 m (<12m)
  F-B :0.3m
   Depth of sludge = 0.3 m
    over all depth of tank = $5+0.3 +0.3
 The set I desired to melt we a 5 TM
    .. Dimensions of tank
   = 18m x 9. 54m x 5.1m
 the least to Land to divers and
```

97	Design a circular clartifocculator for Treating water For Required Population of 6,50,00 with a daily per capita consumption of 135 LPCD. Assume surface loading rate as 1000
	Average daily Consumption = 8,60,000 x126 = 74.25 x 10 litres
	Man. daily demand = 1.8 x 74.25 x106
	= 1-3365 133.68 × 10° litrey
	Surface area of tanks = 74.28 x 10 = 3093.75m
	Take three tanks.
	Area of each Tonks = 3093.75 13 = 1031.25 m2
	Assume detertion period = 3h
	Valorer al trule = 74.25 × 10°×3 9 281.29m3
	Jalome of tanks = 74.26 × 10°×3 = 9281.28m3
	= 3093.75 m3
	water depth in tanks = Valome = 3098.75=100
	Provide a Son los States and a son as
	Provide O.Sm for Sludge and O.Sm as free board.
	Table don't all la line con said
	Tatal depth of tank = 1+0.5+0.5=2m Classifloculator surface area = II (02-P,2)
	= 1081.25m
	02 = 303128 × 4 × 1243 = 189076
	D, = dia of Floculation = 12m (as Calculated at II)
	D = 1189076 = 36.9 = 37m

ij	Design of Floculator: Assume detention period for floe formation =
	Volm of flocculation = 74.25 × 106 × 20 = 1031.25 m ³ 1000 × 60 × 24 3
	Assume depth of flocculation zone = 3m
	Area of Flocculation zone = 1031.25 = 343.75 m ²
	Provide three tonks Area of each tank = 343.75 = 114.583
	= 38.3 m²
	Dia of flocculator D, = V14x38.3)/I
	= 6.98m ~ 7m II

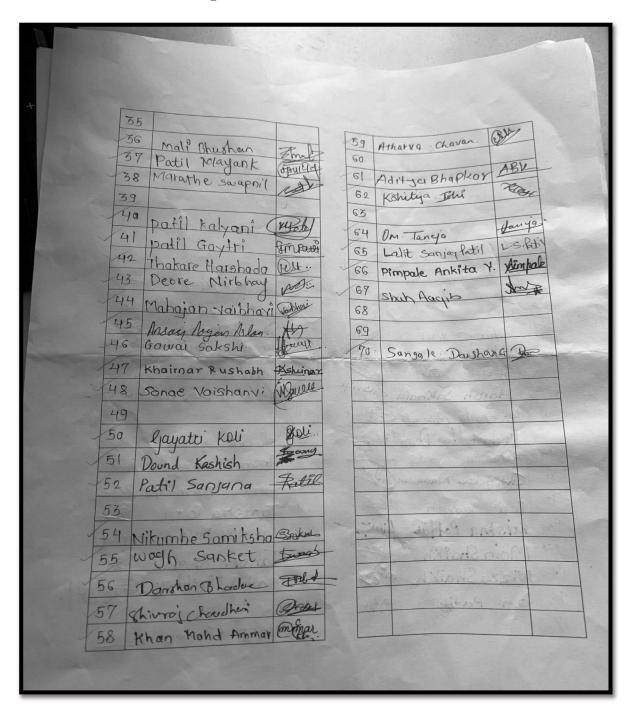
Que.	Design the approximate dimensions of a set of
due.	citters for treating water requires
	C F EA AGA ! THE TOTE OF
	for a population of 5,50,000, En The
	Supply being 135 litres per day per person. The
	course are rated to work 6000 littles per nout
	per Sq. m. Assume whatever data are necessary , &
	bet 24 W. Wazarus course
	not given.

Ans:	Population \$ 5,50,000
	Q = 135 LCPD LPCD
	Max ^m water demand per day,
	= 5,50,000 x 135
	= 74.25 x 10 ⁶ Litres
	Assuming that 4% of filtered water is
	required for washing of the filter, everyday,
	we have,
	Total filtered water required per day,
	$= 74.25 \times 10^6 \times 1.04$
	= 77.22 × 10 ⁶ litres
	= 77.22 MLD
11.0	
800	Now, assuming that 0.5 hour is lost
	everyday in washing the filter, we have
	Filtered water required per hour,
	_ 77.22 = 3.28 MLD
	23.5
	Letter deserte a la constant de la c
	Now, assuming the rate of filtration to
	be 6000 littes / hr. / sq.m , we have
	The area of filter required,
	3.28 × 106 546 Sq. m
	6000

Now, assuming the length of filter bed (1) as 1.5 times the width of the filter bed (B). 4 8 beds, the total area provided -L = 1.5 B :. 8 x (L.B). = 546 8x (1.5 B) (B) = 546 8º _ 546 8x1.5 .. B = 7m L = 7x1.5 -: L= 10.5m Hence, adopt 8 filter Units; each of dimensions (10.5 x 7) m. * Design of under-drainage system: Let a "manifold & lateral system" to be provided below the filter bed, for receiving the filtered water & to allow back washing for cleaning the filter. This consists of a central manifold pipe, with laterals having perforations at their bottom. To design this system, let us assume that the total area of the perforations in all the laterals is 0.2% of the total filter area .. Total area of perforations, = 0.2% x Filter area


```
- 0.2 x (10.13) x4
       = 0.141 m2
    Now, assuming the area of each lateral,
      = 2 x total area of perforation
     = 2 x 0.141
     = 0.282 m<sup>2</sup>
 Hence, assuming the area of manifold to
 be about twice the area of laterals,
 we have,
The area of manifold -
   = 2 \times 0^{282}
= 0.564 \text{ m}^2
 .. Diam of manifold (d) is given by,
       IT . d2 = 0.564
    = 0.564×4 = d<sup>2</sup>
        : d = 0.718 ≈ 1m
  Hence, use 100cm diam. manifold pipe laid
length wise along the centre of the filter
bottom ·
The no. of laterals is given as -
      = 10.13 × 100 = 68 Nos
```


Now, length of each lateral,
Now, length of each lateral, Width of filter _ Diam of manifold 2
2
$= \frac{7}{2} - \frac{1}{2} = 3m$
Now, adopting 13 mm diam perforations in
Now, adopting 15 the
the laterals, we have Total area of perforations = 0.141 m²
$1.1410 = x \times \frac{\pi}{4} \times (1.3)^2$
* 4
∴ ∞ = 1063
Twhere.
x = Total no. of perforations in all laterals]
No. of perforations in each lateral,
1063 _ 7
160
Area of perforations per lateral,
$= 7 \times \left[\frac{\text{IT}}{4} \times (1.3)^2 \right] \text{ cm}^2$
$= 8.9 \text{cm}^2$
Now, area of each lateral
= 2 x Area of perforations per lateral
= 2× 8.9
= 17.8cm ²


.. Diam. of each lateral, (d) Hence, use 136 laterals each of 4.9 cm diam., @ 15 cm c/c, each having 7 perforations of 13 mm size, with 100cm diam. manifold. CHECK: Length of each lateral 300 Diam. of lateral 4.8 = 62.5 * Design of wash water troughs: Wash water troughs, as said earlier, are generally kept at about 1.5-2 m apart. So in a width of 7m of filter bed, let us provide 3 troughs, at 7 = 2.33 m apart. Now, The total wash water discharge, of _ 0.60 (10.13 x7) = 0.709 m3 | sec 60 The total wash water discharge of 0.709 m enters in these 3 troughs,

	arge in each		
-	0.70g = 0.3	236 m ³	Sec
The	dimension of	a con	crete V-bottor
trough ar	e now desig	ned by	using an
emperical	formula,	nm yl	
Q	= 1.376 x b x y	3/2	byshount
where,			EN33145
	scharge in m	*	S DEBRING
b = wid	th of trough	in m	= 1 (assume)
y = wa	ter depth in	trough	in m
Let ,	0.236 = 1.376	×1×4	3/2_
		114 11	a photo
	y = 0171	yymag	A CONTRACTOR OF THE PARTY OF TH
	y = 0.308 m	≈ 30.	8 cm
ASSUM	5cm freebo	pard,	adopt the de
of troug	h , -		
	= 30.8 +5		1000
101 30	= 35.8 cm	teour 1	7.7 S.12
200 100	OTTO A TOTAL	To Lie	-0
Hence	, 3 No. wash	water	troughs at
35.8cm x	30.8 cm may	be o	used.
	(2)	1 10 11	

Attendance of Participants

It will be our sole responsibility about our safety and any 2022 for students of Second Year Civil Engineer Unstitute. We are also solemnly giving in writing that we shall be Roll Roll No.	ing, STCE, we will pro-
No. Name of Student Sign Shirscall Aland Aday	Roll Name of Student No.
3 Magas diag solo	18 19 sai badgujar 20 can a san ar
5 Dhiroj choudhori Dun	21 Sharthak Potwon Status
6 Girish Patal Gas	23 Pathan Showil Pather
7 Harsh Sakhala Sakhala	24 Loghi front levil Long
8 Harshada Ganalo Hond	0.5
10 Ustanshu seguda Holinde	26 Snehalgavit So
To Marine source	27 Ansari Subayyi Sat
11 Indulckha Nambian martin	28 Swappil Dhamals St.
12 Patil Jagruti Fysi	21 Janisha latti
13 Krisma Poddar Julius	30 Tanmoy Patil Terati
Moin Shaikh	31 Tanvir Shelar Color
15 Nizzu Shaikh august	32 Patril Vaibher Training
16 om. Patil age	134 Yadaya Pawar Ju
17	

Dr. Shrikant Randhavane

HOD Civil Dept.

